濾過

1. 濾過装置

濾過は、濾布や粒子充填層などの濾材を用いてスラリー(懸濁液)を湿潤固体と液体に分離する機械 的分離操作である。スラリーの固体濃度が1 vol%以上の場合、濾材面上にケーク(濾滓、ろさい)と呼ば れる湿潤固体層が形成され、ケーク自体が濾材の役割を果たす。このような濾過をケーク濾過といい、 固体または液体、あるいはその両方の回収が目的となる。スラリーの固体濃度が 0.1 vol%以下の希薄条件 となる場合、固体粒子が濾材の内部で捕捉され、ケークはほとんど形成されない。この場合、懸濁粒子 は濾材の奥深くで補足されることから、濾材濾過または内部濾過といい、清澄液の回収が目的となる。 重力式清澄濾過機の例として、水処理の前処理に用いられるサンドフィルタ(砂濾過器)がある。砂利を 支持層として、その上に粗大粒子のアンスラサイト(石炭粉砕物)と微小粒子の砂を充填する。これら を濾材として、原水を清澄化する。加圧式ケーク濾過機の例として、回分式のフィルタープレス(圧濾機) がある。濾板と濾枠の間に濾布を挟んで交互に並べ、締め付ける。濾板と濾枠に囲まれて形成される濾 室内に原液のスラリーを圧入し、濾過する。濾室内がケークで充満したら、ケークを洗浄後、締め付け を緩めてケークを排出する。真空式ケーク濾過機の例として、連続式のオリバーフィルタがある。濾過 機本体であるドラムを横倒して一部を原液槽に浸し、ドラムを緩やかに回転させる。ドラム表面に張ら れた濾布を介して連続的に濾過が行われ、続いてケークの洗浄、脱水、排出が1回転する内に順次行わ れる。ドラムの周囲は、仕切り板によって、複数の小さな濾室に分割されている。中央の自動切替弁に よって、濾過、洗浄、脱水の各区間に連結する濾室は真空状態となり、ケーク排出の区間に連結する濾 室は加圧状態となる。スクレーパー(かき取り機)で濾布上のケークをはぎ取る。

図 1.1 ケーク濾過機の例 上:フィルタープレス、下:オリバーフィルタ

2. 粒子充填層内の流れ

2.1 相当直径

流路がまっすぐな円管でない場合は、相当直径に換算することで、直円管と同様の取り扱いができる。 相当直径 *D*_{eq} [m]は、流体と接している壁面周辺の長さ、すなわちぬれ辺長 *l*_w [m]と流路断面積 *A* [m²]の比 で表される動水半径 *r*_H [m]の4倍で定義される。

 $D_{eq} = 4r_{H} \qquad \cdots (2.1.1)$ $D_{eq} = \frac{4A}{l_{w}} \qquad \cdots (2.1.2)$

4倍の理由は、次式のように、円管における相当直径 Deqを円管径 Dと一致させるためである。

$$D_{eq} = \frac{4\pi (D/2)^2}{\pi D} \cdots (2.1.3)$$
$$D_{eq} = D \cdots (2.1.4)$$

流路形状が開溝と環状路の場合の相当直径 Dea は、それぞれ次式で表される。

(開溝)
$$D_{eq} = \frac{4ab}{2a+b}$$
 …(2.1.5)
(環状路) $D_{eq} = \frac{4\pi [(D_2/2)^2 - (D_1/2)^2]}{\pi (D_2 + D_1)} = D_2 - D_1$ …(2.1.6)

三上 貴司「濾過」新潟大学晶析工学研究室解説資料

2.2 ダルシーの式

断面積 *A* [m²]の粒子充填層に一定の流量 *Q* [m³/s]で流体を流 すと(空塔速度 *u* [m/s])、マノメーターの液位に差が生じて、こ の分だけ圧力損失を生じる。圧力損失Δ*P* [Pa]は、流体が粒子充 填層内を流れる際の摩擦損失に相当し、空塔速度 *u* [m/s](=*Q*/A)、 流体粘度 *μ* [Pa·s]、層高 *L* [m]に比例する。これらの関係式は、 ダルシーの式で表される。[文献 1]

 $u = k_{\rm p} \frac{\Delta P}{\mu L} \left(= \frac{Q}{A} \right) \qquad \cdots (2.2.1)$

ただし、kpは透過係数[m²]。

ダルシーの式は簡便だが、粒子充填層やそれを構成している固体粒子に関する粒子特性項が含まれない為、粒子充填層を変更するたびに透過係数 kp を実験的に求める必要がある。

いま、少量の固体粒子を含む希薄懸濁液を上記の粒子充填層(濾層)により濾過する場合を考える(砂濾 過)。濾過速度 *u* [m/s]は、ダルシーの式を用いて次式のように表される。(濾層支持体の抵抗は無視する。)

$$u = \frac{1}{A} \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\Delta P}{\mu R} \quad \left[R \equiv \frac{L}{k_{\rm p}} \right] \quad \cdots (2.2.2)$$

ただし、*A* は濾過面積[m²]、*L* は濾層高さ[m]、*R* は濾層抵抗[1/m]、*V* は濾液量[m³]、*t* は濾過時間[s]。 圧力損失Δ*P* [Pa]は濾過圧力 *P* [Pa]に相当し、給液面(濾過中、濾層入口からの液面高さ*L*₀ [m]が一定に維 持されるものとする)から濾層入口までの液圧 *P*₁と濾層入口から出口までの液圧 *P*₂の合計に等しい。

 $\Delta P(=P) = P_1 + P_2 = \rho g L_0 + \rho g L = \rho g (L_0 + L) \quad \cdots (2.2.3)$

【計算例】透過係数

直径 50.0 cm の円筒容器に砂を 120 cm 充填して少量の固体粒子を含む希薄懸濁液を毎時 360 L で砂濾過 する。濾層入口からの液面高さが 30.0 cm に維持されるように給液するとき、①濾過圧力 P [kPa]、②濾 過速度 u [mm/s]、③濾層抵抗 R [m⁻¹]、④透過係数 k_p [m²]を求めよ。濾液の密度 1000 kg/m³、粘度 1.00 mPa・ s、重力加速度 9.81 m/s² とする。(①14.7 kPa, ②0.509 mm/s, ③2.89×10¹⁰ m⁻¹, ④4.15×10⁻¹¹ m²) ① $P=pg(L_0+L)=(1000)(9.81)[(30.0/100)+(120/100)]=14715 Pa=[14.7 kPa]$

 $(2)A = \pi D^2/2 = \pi [(50.0/100)/2]^2 = \pi/16$

 $u=Q/A=[(360/1000)/3600]/(\pi/16)=5.0929\times10^{-4} \text{ m/s} \doteq 0.509 \text{ mm/s}$ (3) $R=\Delta P/(\mu u)=14715/[(1.00\times10^{-3})(5.0929\times10^{-4})]=2.8893\times10^{10} \text{ m}^{-1} \doteq 2.89\times10^{10} \text{ m}^{-1}$ (4) $k_p=L/R=(120/100)/(2.8893\times10^{10})=4.1532\times10^{-11} \text{ m}^2 \doteq 4.15\times10^{-11} \text{ m}^2$

2.3 コゼニー・カルマンの式

粒子充填層内の流れは、みかけの直径 *de* [m]、みかけの長さ *Le* [m]の仮想的な直円管内流れとみなすことができる。このとき、粒子充填層内を流れるみかけの平均流速 *ue* [m/s]は、ハーゲン・ポアズイユの式を用いて次式で表される。[文献 2, 3]

$$u_{\rm e} = \frac{d_{\rm e}^{2} \Delta P}{32 \mu L_{\rm e}} \quad \cdots (2.3.1)$$

 μ は流体粘度[Pa·s]、 ΔP は圧力損失[Pa]。

粒子充填層内における仮想的な屈曲流路において、空隙率 ε [-]は粒子充填層の全体積 V_{0} [m³]に対する空隙体積 V_{e0} [m³]の比で表される。

$$\varepsilon = \frac{V_{e0}}{V_{b}}$$
(2.3.2)

粒子充填層と空隙部の断面積をそれぞれAおよびAe0[m²]とするとき、上式を用いて次式が成り立つ。

$$\varepsilon = \frac{A_{e0}L}{AL} = \frac{A_{e0}}{A} \quad \cdots (2.3.3)$$

ここで、空塔速度 u [m/s]および屈曲流路内のみかけの平均流速 u_{e0} [m/s]は、流体の体積流量 Q [m³/s]を用いてそれぞれ次式で表される。

$$u = \frac{Q}{A}$$
 ...(2.3.4)
 $u_{e0} = \frac{Q}{A_{e0}}$...(2.3.5)

 $u \ge u_{e0}$ の比をとってQを消去したものを ε の式に代入し、 $A \ge A_{e0}$ を消去すると、次式のようになる。

$$\frac{u}{u_{e0}} = \frac{A_{e0}}{A} \quad \cdots (2.3.6)$$
$$\varepsilon = \frac{u}{u_{e0}} \quad \cdots (2.3.7)$$
$$u_{e0} = \frac{u}{\varepsilon} \quad \cdots (2.3.8)$$

粒子充填層内における流体の透過時間は、あらゆる流路モデルにおいて等しい。いま、仮想的な屈曲流路と延伸流路の透過時間を等置し、みかけの平均流速 *u*e [m/s]について整理すると、次式の通りとなる。

$$\frac{L}{u_{e0}} = \frac{L_{e}}{u_{e}} \quad \cdots (2.3.9)$$

$$u_{\rm e} = u_{\rm e0} \frac{L_{\rm e}}{L} \cdots (2.3.10)$$

ueoの式を上式に代入すると、次式を得る。

$$u_{\rm e} = \frac{uL_{\rm e}}{\varepsilon L} \qquad \cdots (2.3.11)$$

みかけの円管径 de [m]は、相当直径の式を次式の通りに変形して得る。

$$d_{e} = 4 \times \frac{AL}{l_{w}L} \quad \cdots (2.3.12)$$

$$d_{e} = 4 \times \frac{V}{A_{w}} \quad \cdots (2.3.13)$$

$$d_{e} = 4 \times \left[\frac{V_{b}\varepsilon}{S_{v}V_{b}(1-\varepsilon)}\right] \quad \cdots (2.3.14)$$

$$d_{e} = \frac{4\varepsilon}{S_{v}(1-\varepsilon)} \quad \cdots (2.3.15)$$

Aは流路断面積[m²]、Awはぬれ面積[m²]、Lは層高[m]、lwはぬれ辺長[m]、Svは体積基準の比表面積[m²/m³]、 V_b は粒子充填層体積[m³]、Vは流路体積[m³]。

*u*eの式と *d*eの式をそれぞれハーゲン・ポアズイユの修正式に代入し、空塔速度 *u* [m/s]あるいは層高あた りの圧力損失Δ*P*/*L* [Pa/m]について整理すると、コゼニー・カルマンの式が導かれる。[文献 4-6]

$$\frac{uL_{e}}{\varepsilon L} = \frac{1}{32} \left[\frac{4\varepsilon}{S_{V}(1-\varepsilon)} \right]^{2} \frac{\Delta P}{\mu L_{e}} \qquad \cdots (2.3.16)$$

$$u = \frac{\varepsilon}{32} \left(\frac{L}{L_{e}} \right) \left[\frac{16\varepsilon^{2}}{S_{V}^{2}(1-\varepsilon)^{2}} \right] \frac{\Delta P}{\mu L_{e}} \qquad \cdots (2.3.17)$$

$$u = \frac{1}{2} \left(\frac{L}{L_{e}} \right) \left[\frac{\varepsilon^{3}}{S_{V}^{2}(1-\varepsilon)^{2}} \right] \frac{\Delta P}{\mu L_{e}} \qquad \cdots (2.3.18)$$

$$u = \frac{1}{2} \left(\frac{L}{L_{e}} \right)^{2} \left[\frac{\varepsilon^{3}}{S_{V}^{2}(1-\varepsilon)^{2}} \right] \left(\frac{\Delta P}{\mu L_{e}} \right) \left(\frac{L_{e}}{L} \right) \qquad \cdots (2.3.19)$$

$$u = \frac{1}{k} \left[\frac{\varepsilon^{3}}{S_{V}^{2}(1-\varepsilon)^{2}} \right] \frac{\Delta P}{\mu L} \qquad \left[1/k \equiv (1/2)(L/L_{e})^{2} \right] \qquad \cdots (2.3.20)$$

$$u = \left[\frac{\varepsilon^{3}}{kS_{V}^{2}(1-\varepsilon)^{2}} \right] \frac{\Delta P}{\mu L} \qquad \cdots (2.3.21)$$

$$\frac{\Delta P}{L} = kS_{V}^{2} \frac{(1-\varepsilon)^{2}}{\varepsilon^{3}} \mu u} \qquad \cdots (2.3.22)$$

kはコゼニー定数[-]であり、経験的に k≒5 であることが知られている。[文献 4,5] ダルシーの式とコゼニー・カルマンの式を比較すると、粒子特性項を含む透過係数 kp [m²]が得られる。 このことから、コゼニー・カルマンの式がダルシーの式を修正した式になっていることが分かる。

$$k_{\rm p} = \frac{\varepsilon^3}{5S_{\rm V}^2(1-\varepsilon)^2}$$
 ...(2.3.23)

図 2.3.1 粒子充填層内の流動モデル[文献 4] (ア)実際の流路、(イ)仮想的な屈曲流路、(ウ)仮想的な延伸流路

2. 4 空隙率

空隙率あるいは空間率 ε は、粒子充填層の全体積 V_{b} [m³]に対する空隙体積 V_{e} [m³]の比で定義される。

$$\varepsilon \equiv \frac{V_{\rm e}}{V_{\rm b}}$$
 ...(2.4.1)

空隙体積 V_e を直接測定することは難しい。そこで、 V_e を充填層体積 V_b と充填層内の粒子体積 V_p の差(V_b $-V_p$)に置き換える。

$$\varepsilon = \frac{V_{\rm b} - V_{\rm p}}{V_{\rm b}} \qquad \cdots (2.4.2)$$
$$\varepsilon = 1 - \frac{V_{\rm p}}{V_{\rm b}} \qquad \cdots (2.4.3)$$

充填層体積 *V*₆は、充填層の形状を円柱と仮定すると、充填層の断面積 *A* [m²]と層高 *L* [m]を用いて次式で 表される。

 $V_{\rm b} = AL \quad \cdots (2.4.4)$

粒子体積 V_pは、粒子重量 W_p[kg]と粒子密度 ρ_p[kg/m³]を用いて表す。

$$V_{\rm p} = \frac{W_{\rm p}}{\rho_{\rm p}} \qquad \cdots (2.4.5)$$

 $V_{b} \ge V_{p}$ の式を ε の式に代入すると、計算しやすい形での空隙率を得る。

$$\varepsilon = 1 - \frac{W_{\rm p}}{\rho_{\rm p} AL}$$
 ...(2.4.6)

3. ケーク濾過<mark>[文献 7-13]</mark>

3.1 物質収支

3.1.1 ケーク中の固体量

原料スラリー M_{sl} [kg]を濾過すると、湿潤ケーク M_c [kg-湿潤固体]と濾液 M_ℓ [kg]に分離される。このとき、濾過前後の物質収支式は、次式で表される。

(全物質収支) $M_{\rm sl} = M_{\rm c} + M_{\ell} (= M_{\rm c} + \rho V)$ …(3.1.1.1)

(固体量収支) $M_{sl}s = M_c s_c (= W_c)$ …(3.1.1.2)

ただし、s はスラリー濃度[kg-乾燥固体/kg-懸濁液]、s_cは湿潤ケーク中の固体質量分率[kg-乾燥固体/kg-湿 潤固体]、V は濾液量[m³]、W_cは湿潤ケーク中の固体量[kg-乾燥固体]、 ρ は濾液密度[kg/m³]。 固体量収支式の $M_{sl} \ge M_c を全物質収支式に代入する。$

$$\frac{W_{c}}{s} = \frac{W_{c}}{s_{c}} + \rho V \qquad \cdots (3.1.1.3)$$

$$\left(\frac{1}{s} - \frac{1}{s_{c}}\right) W_{c} = \rho V \qquad \cdots (3.1.1.4)$$

$$W_{c} = \frac{\rho V}{(s_{c} - s)/(ss_{c})} \qquad \cdots (3.1.1.5)$$

$$W_{c} = \frac{\rho s V}{(s_{c} - s)/s_{c}} \qquad \cdots (3.1.1.6)$$

$$W_{c} = \frac{\rho s V}{1 - (s/s_{c})} \qquad \cdots (3.1.1.7)$$

$$\overline{W_{c} = \frac{\rho s V}{1 - ms}} \qquad \left[m = \frac{1}{s_{c}} = \frac{M_{c}}{W_{c}}\right] \qquad \cdots (3.1.1.8)$$

$$\overline{W_{c} = \kappa V} \qquad \left[\kappa = \frac{\rho s}{1 - ms}\right] \qquad \cdots (3.1.1.9)$$

ただし、 κ は濾液基準の固体濃度[kg-乾燥固体/m³-濾液]、mはケーク湿乾質量比[kg-湿潤固体/kg-乾燥固体]。 希薄スラリーの場合は、 $1-ms \Rightarrow 1$ が成り立つ。

3.1.2 濾液量

スラリー処理量 Vsl [m3]が既知の場合は、上で導いた物質収支式より濾液量 V [m3]を得る。

$$V = \frac{1 - ms}{\rho s} W_{c} \quad \cdots (3.1.2.1)$$
$$V = \frac{1 - ms}{\rho s} M_{sl} s \quad \left[W_{c} = M_{sl} s \right] \quad \cdots (3.1.2.2)$$
$$V = \frac{1 - ms}{\rho s} \rho_{sl} s V_{sl} \quad \left[M_{sl} = \rho_{sl} V_{sl} \right] \quad \cdots (3.1.2.3)$$

$$V = \frac{(1 - ms)\rho_{\rm sl}V_{\rm sl}}{\rho} \quad \cdots (3.1.2.4)$$

ただし、 M_{sl} はスラリー重量[kg]、 ρ_{sl} はスラリー密度[kg/m³]。 スラリー密度 ρ_{sl} [kg/m³]は、次式のように導かれる。

$$\rho_{\rm sl} = \frac{M_{\rm sl}}{\frac{M_{\rm sl}s}{\rho_{\rm s}} + \frac{M_{\rm sl}(1-s)}{\rho}} \cdots (3.1.2.5)$$

$$\rho_{\rm sl} = \frac{1}{\frac{s}{\rho_{\rm s}} + \frac{1-s}{\rho}} \cdots (3.1.2.6)$$

3.1.3 ケーク湿乾質量比

ケーク湿乾質量比 m [kg-湿潤固体/kg-乾燥固体]は、湿潤時ケーク重量 M_c [kg-湿潤固体]と乾燥時ケーク 重量 W_c [kg-乾燥固体]の比で表される。

$$m = \frac{M_{\rm c}}{W_{\rm c}} \qquad \cdots (3.1.3.1)$$

たとえば湿潤ケーク 1 kg 中に水分が 20%含まれるとき、*m*=1/(1-0.20)=1.25 となる。 湿潤ケークを湿潤粒子充填層と考えると、次式のように導かれる。

$$m = \frac{AL_{c}\rho_{c}}{AL_{c}(1 - \varepsilon_{av})\rho_{s}} \quad \cdots (3.1.3.2) \quad \left[M_{c} = AL_{c}\rho_{c}, W_{c} = AL_{c}(1 - \varepsilon_{av})\rho_{s}\right]$$
$$m = \frac{\rho_{c}}{(1 - \varepsilon_{av})\rho_{s}} \quad \cdots (3.1.3.3)$$

ただし、A は濾過面積(ケーク断面積) $[m^2]$ 、 L_c はケーク厚み[m]、 ε_{av} は湿潤ケークの平均空隙率[-]、 ρ_c はケーク密度 $[kg/m^3]$ 、 ρ_s は固体密度 $[kg/m^3]_o$

m が既知の場合は、上式を変形して湿潤ケークの平均空隙率 Eav[-]を求める。

$$1 - \varepsilon_{av} = \frac{\rho_{c}}{m\rho_{s}} \quad \cdots (3.1.3.4)$$
$$\varepsilon_{av} = 1 - \frac{\rho_{c}}{m\rho_{s}} \quad \cdots (3.1.3.5)$$

3.1.4 ケーク厚み

ケーク厚み $L_{\rm c}$ [m]は、湿潤ケーク中の固体量 $W_{\rm c}$ の式より導かれる。 $W_{\rm c} = AL_{\rm c}(1-\varepsilon_{\rm av})\rho_{\rm s}$ …(3.1.4.1) $L_{\rm c} = \frac{1}{\rho_{\rm s}(1-\varepsilon_{\rm av})} \frac{W_{\rm c}}{A}$ …(3.1.4.2)

 ε_{av} の式を代入すると、 ε_{av} を含まないケーク厚み L_c が導かれる。

$$L_{\rm c} = \frac{1}{\rho_{\rm s} \left(\rho_{\rm c}/m\rho_{\rm s}\right)} \frac{W_{\rm c}}{A} \left[\varepsilon_{\rm av} \equiv 1 - \frac{\rho_{\rm c}}{m\rho_{\rm s}}\right] \quad \cdots (3.1.4.3)$$

$$L_{\rm c} = \frac{mW_{\rm c}}{\rho_{\rm c}A} \qquad \cdots (3.1.4.4)$$

3.1.5 ケーク密度

上式は、湿潤ケーク m [kg]分の体積が乾燥ケーク 1 kg 分の体積と間隙水(m-1)[kg]分の体積の和で表されることを表している。

$$\rho_{\rm c} = \frac{m}{\frac{1}{\rho_{\rm s}} + \frac{m-1}{\rho}} \quad \cdots (3.1.5.11)$$

3.2 濾過速度

3.2.1 基本方程式

ケーク内における濾液の流れは、透過流動とみなすことができる。ケーク内の流動状態を層流と仮定 すると、濾過速度 *u* [m/s]はダルシーの式を用いて次式のように表される。

(ケーク部)
$$u = \frac{1}{A} \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\Delta P_{\mathrm{c}}}{\mu R_{\mathrm{c}}} \left[R_{\mathrm{c}} \equiv \frac{L_{\mathrm{c}}}{k_{\mathrm{p}}} \right] \cdots (3.2.1.1)$$

ただし、A は濾過面積[m²]、 L_c はケーク厚み[m]、 R_c はケーク内の流動抵抗(ケーク抵抗)[1/m]、V は濾液 量[m³]、t は濾過時間[s]、 ΔP_c はケーク部の圧力損失[Pa]であり、濾過圧 P と濾材部にかかる圧力 P_m の差 ($P-P_m$)で表される。

ケーク部と濾材部で直列的に濾過が進むことから、濾材部についても上と同様の式で表される。

(濾材部)
$$u = \frac{1}{A} \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\Delta P_{\mathrm{m}}}{\mu R_{\mathrm{m}}}$$
 ····(3.2.1.2)

ただし、 R_m は濾材抵抗[1/m]、 ΔP_m は濾材部の圧力損失[Pa](= P_m -0)。 ケーク部と濾材部の式を辺々加えると、総括の濾過速度 u [m/s]が導かれる。

$$u(\mu R_{\rm c} + \mu R_{\rm m}) = \Delta P_{\rm c} + \Delta P_{\rm m} \quad \cdots (3.2.1.3)$$

(総括) $u = \frac{1}{A} \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\Delta P}{\mu (R_{\rm c} + R_{\rm m})} \quad \left[\Delta P \equiv \Delta P_{\rm c} + \Delta P_{\rm m} = (P - P_{\rm m}) + (P_{\rm m} - 0) = P\right] \quad \cdots (3.2.1.4)$

ただし、 ΔP [Pa]はケーク部と濾材の総括圧力損失[Pa]。 ケーク抵抗 R_{c} [1/m]は、湿潤ケーク中の固体量 W_{c} [kg-乾燥固体]に比例し、濾過面積 A [m²]に反比例する。

$$R_{\rm c} = \alpha \frac{W_{\rm c}}{A} \qquad \cdots (3.2.1.5)$$

ただし、αは**比抵抗[m/kg**]であり、濾過のしにくさを表す。 濾材抵抗 R_m[1/m]は、<u>濾材自体を抵抗 R_mの仮想ケーク</u>に置き換えると、上式と同様に表される。

$$R_{\rm m} = \alpha \frac{W_0}{A} \qquad \cdots (3.2.1.6)$$

ただし、Woは仮想ケーク中の固体量[kg-乾燥固体]。

上の2式を総括濾過速度 u の式に代入すると、濾過の基本方程式を得る。

$$u = \frac{\Delta P}{\mu[(\alpha W_c/A) + (\alpha W_0/A)]} \quad \cdots (3.2.1.7)$$

$$u = \frac{A\Delta P}{\mu\alpha(W_c + W_0)} \quad \cdots (3.2.1.8)$$

$$u = \frac{\Delta P}{\mu\left[\frac{\rho s \alpha}{1 - ms}\left(\frac{V}{A}\right) + \frac{\rho s \alpha}{1 - ms}\left(\frac{V_0}{A}\right)\right]} \quad \left[W_c = \frac{\rho s V}{1 - ms}, W_0 = \frac{\rho s V_0}{1 - ms}\right] \quad \cdots (3.2.1.9)$$

$$u = \frac{A\Delta P(1 - ms)}{\mu\rho s \alpha(V + V_0)} \quad \cdots (3.2.1.10)$$

ただし、Voは相当濾液量[m3]であり、濾材抵抗に等しい仮想ケークを形成するのに必要な濾液量を表す。

3.2.2 比抵抗

比抵抗αは、濾過のしにくさを表す。経験的には、10¹¹ m/kg以下は易濾過性、10¹²~10¹³ m/kgは中程 度、10¹³ m/kg以上は難濾過性となる。比抵抗は、空隙率が最大となるケーク表面で最小、空隙率が最小 となる濾材の接面で最大となることから、平均比抵抗αavとして扱う。一般に、圧力損失(濾過圧)が大き くなるほどケークが圧縮されるため、比抵抗は増大する。このことは、次の実験式で表される。

(Ruth ルース型) $\alpha_{av} = \alpha_0 + \alpha_1 \Delta P_c^n (\approx \alpha_0 + \alpha_1 P^n)$ …(3.2.2.1)

(Sperry スペリィ型) $\alpha_{av} = \alpha_1 \Delta P_c^n (\approx \alpha_1 P^n)$ …(3.2.2.2)

ただし、n は**圧縮性指数**[-]であり、ケークの圧縮のしやすさ(変形のしやすさ)を表す。n=0 のとき非圧 縮性であり、n 値が大きくなるほど圧縮性は高くなる。

理論的な比抵抗αは、ケーク内部の流動抵抗がコゼニー・カルマン式に基づくものとして導かれる。

$$R_{c} = \frac{L_{c}}{k_{p}} \quad \cdots(3.2.2.3)$$

$$R_{c} = \frac{1}{\rho_{s}(1 - \varepsilon_{av})} \frac{W_{c}}{A} \Big/ \frac{\varepsilon_{av}^{3}}{5S_{v}^{2}(1 - \varepsilon_{av})^{2}} \quad \left[L_{c} = \frac{1}{\rho_{s}(1 - \varepsilon_{av})} \frac{W_{c}}{A}, k_{p} = \frac{\varepsilon_{av}^{3}}{5S_{v}^{2}(1 - \varepsilon_{av})^{2}} \right] \quad \cdots(3.2.2.4)$$

$$\frac{1}{\rho_{s}(1 - \varepsilon_{av})} \frac{W_{c}}{A} \Big/ \frac{\varepsilon_{av}^{3}}{5S_{v}^{2}(1 - \varepsilon_{av})^{2}} = \alpha \frac{W_{c}}{A} \quad \left[R_{c} = \alpha \frac{W_{c}}{A} \right] \quad \cdots(3.2.2.5)$$

$$\frac{1}{\rho_{s}} \Big/ \frac{\varepsilon_{av}^{3}}{5S_{v}^{2}(1 - \varepsilon_{av})} = \alpha \quad \cdots(3.2.2.6)$$

$$\left[\alpha = \frac{5S_{v}^{2}(1 - \varepsilon_{av})}{\rho_{s}\varepsilon_{av}^{3}} \right] \quad \cdots(3.2.2.7)$$

体積基準の比表面積 $S_V [m^2/m^3]$ は、粒子表面積 $S_p [m^2]$ と粒子体積 $V_p [m^3]$ の比より導かれる。

$$S_{\rm V} = \frac{S_{\rm p}}{V_{\rm p}} = \frac{\phi_{\rm S} D_{\rm p}^2}{\phi_{\rm V} D_{\rm p}^3} = \frac{\phi}{D_{\rm PS}} \qquad \left[\phi \equiv \frac{\phi_{\rm S}}{\phi_{\rm V}}\right] \qquad \cdots (3.2.2.8)$$

ただし、*D*_{PS}は比表面積径[m]、*ϕ*は比表面積形状係数[-](球粒子のとき 6)、*ϕ*sは表面積形状係数[-]、*ϕ*v は体積形状係数[-]。

【計算例】理論比抵抗

非圧縮性の球状固体粒子(粒子密度 2650 kg/m³、比表面積径 1.00 µm)を含む懸濁液を定圧濾過する。①湿 潤ケーク密度 $\rho_c [kg/m^3]$ 、②ケーク平均空隙率 $\varepsilon_{av} [-]$ 、③理論比抵抗 $\alpha [m/kg] を求めよ。ケーク湿乾質量$ 比 1.50、濾液の密度 1000 kg/m³、粘度 1.00 mPa・s とする。(①1710 kg/m³、②0.570、③1.58×10¹¹ m/kg) $①<math>\rho_c=m/[(1/\rho_s)+(m-1)/\rho]=(1.50)/[(1/2650)+(1.50-1)/1000]=1709.6 kg/m³ = 1710 kg/m³$ $\alpha \varepsilon_{av}=1-(\rho_c/\rho_s)/m=1-(1709.6/2650)/1.5=0.56991=0.570$ ③ $S_v=\phi/D_{ps}=6/(1.00\times10^{-6})=6.00\times10^{6}$ $\alpha=5S_V^2(1-\varepsilon_{av})/(\rho_s\varepsilon_{av}^3)=(5)(6.00\times10^{6})^2(1-0.56991)/[(2650)(0.56991)^3]=1.5782\times10^{11} m/kg=1.58\times10^{11} m/kg$

3.3 濾過時間

3.3.1 定圧濾過時間

基本方程式を次式のように変形する。ケークは、非圧縮性であるものとする。[文献 14]

$$u = \frac{1}{A} \frac{dV}{dt} = \frac{A\Delta P(1-ms)}{\mu \rho s \alpha (V+V_0)} \cdots (3.3.1.1)$$

$$\frac{dV}{dt} = \frac{A^2 \Delta P(1-ms)}{\mu \rho s \alpha (V+V_0)} \cdots (3.3.1.2)$$

$$\frac{dV}{dt} = \frac{2A^2 \Delta P(1-ms)}{\mu \rho s \alpha} \frac{1}{2(V+V_0)} \cdots (3.3.1.3)$$

$$\frac{dV}{dt} = \frac{K}{2(V+V_0)} \cdots (3.3.1.4)$$

$$\int_{0}^{V} \frac{2(V+V_{0})}{K} dV = \int_{0}^{t} dt \quad \dots (3.3.1.5)$$

$$\frac{2}{K} \left(\frac{V^{2}}{2} + VV_{0} \right) = t \quad \dots (3.3.1.6)$$

$$t = \frac{V^{2} + 2VV_{0}}{K} \quad \left[K = \frac{2A^{2}\Delta P(1-ms)}{\mu\rho s\alpha}, V_{0} = \frac{A(1-ms)}{\rho s\alpha} R_{m} \right] \quad \dots (3.3.1.7)$$

ただし、Kは定圧濾過定数 $[m^{6/s}]$ 、 V_{0} は相当濾液量 $[m^{3}]$ 。 あるいは、次式で表される。

$$t = \frac{\upsilon^2 + 2\upsilon\upsilon_0}{k} \qquad \left[k \equiv \frac{K}{A^2}, \upsilon \equiv \frac{V}{A}, \upsilon_0 \equiv \frac{V_0}{A}\right] \qquad \cdots (3.3.1.8)$$

ただし、*k*は定圧濾過定数[m²/s]、*v*は濾過面積あたりの濾液量[m]、*v*₀は濾過面積あたりの相当濾液量[m]。 *t*の式を変形して得られる次式に定圧濾過試験データを当てはめると、傾きより定圧濾過定数*K*[m⁶/s]、 切片より相当濾液量 *V*₀[m³]を得る。

$$\frac{t}{V} = \frac{1}{K}V + \frac{2}{K}V_0$$
(3.3.1.9)

傾きより K 値を求めて比抵抗 α [m/kg]を得る。

$$\alpha = \frac{2A^2 \Delta P(1 - ms)}{K \mu \rho s} \qquad \cdots (3.3.1.10)$$

切片より Vo値を求めて濾材抵抗 Rm [1/m]を得る。

$$R_{\rm m} = \alpha \frac{W_0}{A} \qquad \cdots (3.3.1.11)$$
$$\boxed{R_{\rm m} = \frac{\rho s \alpha V_0}{A(1-ms)}} \qquad \left[W_0 = \frac{\rho s V_0}{1-ms}\right] \qquad \cdots (3.3.1.12)$$

【計算例】ケーク濾過

懸濁液をヌッチェフィルタにより定圧濾過する。①濾液量 V[L]、②ケーク平均空隙率 ε_{av}[-]、③濾液基 準の固体濃度 κ [kg-乾燥固体/m³-濾液]、④比抵抗 α [m/kg]、⑤濾材抵抗 R_m [1/m]を求めよ。設計条件は下 記の通りとする。(①0.926 L, ②0.570, ③90.9 kg/m³, ④3.29×10¹⁰ m/kg, ⑤4.81×10¹⁰ m⁻¹)

	, = 0 ,		
<u>スラリー量 <i>V</i>sl</u>	1.00 L	濾液粘度μ	1.00 mPa•s
<u>スラリー濃度 s</u>	8.00 wt%	濾過圧力ΔP	0.275 MPa
ケーク湿乾質量比 m	1.50	濾過面積A	0.0250 m ²
固体密度 <u>ps</u>	2650 kg/m ³	<u>Ruth Plot の傾き 1/K</u>	8.70×10 ⁶ s/m ⁶
<u>濾液密度 p</u>	1000 kg/m ³	<u>Ruth Plot</u> の切片 2V ₀ /K	7.00×10 ³ s/m ³
$ (1)\rho_{\rm sl} = 1/[(s/\rho_{\rm s}) + (1-s)/\rho] = 1/[(8.00 \times 10^{-1})/\rho] = 1$	$^{-2}/2650)$ +(1-8.00×	10^{-2})/1000]=1052.4 kg/m ³	
$V = (1 - ms)\rho_{\rm sl}V_{\rm sl}/\rho = [1 - (1.50)(8.00 \times 10^{-1})]$	$(1052.4)(1.00 \times 10^{-2})$	$10^{-3})/(1000) = 9.2611 \times 10^{-4} \text{ m}^3 \rightleftharpoons 0.926 \text{ L}$	
<u> </u>			

 $(2)\rho_{\rm c} = m/[(1/\rho_{\rm s}) + (m-1)/\rho] = 1.50/[(1/2650) + (1.50-1)/1000] = 1709.6 \text{ kg/m}^3$

 $\varepsilon_{av} = 1 - (\rho_c/\rho_s)/m = 1 - (1709.6/2650)/1.50 = 0.56991 \Rightarrow 0.570$

③κ=ρs/(1-ms)=(1000)(8.00×10⁻²)/[1-(1.50)(8.00×10⁻²)]=90.909 kg-乾燥固体/m³-濾液

≒90.9 kg-乾燥固体/m³-濾液

 $(4)K = 1/(1/K) = 1/(8.70 \times 10^6) = 1.1494 \times 10^{-7} \text{ m}^{6/s}$

 $V_0 = (K/2)(2V_0/K) = (1.1494 \times 10^{-7}/2)(7.00 \times 10^3) = 4.0229 \times 10^{-4} \text{ m}^3$

 $\alpha = 2A^2 \Delta P(1 - ms)/(\mu \rho sK)$

 $= (2)(0.0250)^2(0.275 \times 10^6)[1 - (1.50)(8.00 \times 10^{-2})]/[(1.00 \times 10^{-3})(1000)(8.00 \times 10^{-2})(1.1494 \times 10^{-7})]$

 $=3.2897 \times 10^{10} \text{ m/kg} = 3.29 \times 10^{10} \text{ m/kg}$

 $(5)R_{\rm m}=\rho s\alpha V_0/[A(1-ms)]$

 $=(1000)(8.00\times10^{-2})(3.2897\times10^{10})(4.0229\times10^{-4})/[(0.0250)\{1-(1.50)(8.00\times10^{-2})\}]=4.8124\times10^{10}$

 \Rightarrow 4.81×10¹⁰ m⁻¹

3.3.2 定速濾過時間

基本方程式を次式のように変形する。

$$u = \frac{A\Delta P(1 - ms)}{\mu \rho s \alpha (V + V_0)} \quad \cdots (3.3.2.1)$$
$$\frac{V}{A} + \frac{V_0}{A} = \frac{(\Delta P_c + \Delta P_m)(1 - ms)}{u \mu \rho s \alpha} \quad \left[\Delta P \equiv \Delta P_c + \Delta P_m\right] \quad \cdots (3.3.2.2)$$

濾材部の濾過速度式を次式のように変形する。

$$u = \frac{\Delta P_{\rm m}}{\mu R_{\rm m}} \quad \cdots (3.3.2.3)$$
$$u = \frac{\Delta P_{\rm m}}{\mu (\alpha W_0 / A)} \quad \left[R_{\rm m} = \alpha \frac{W_0}{A} \right] \quad \cdots (3.3.2.4)$$
$$u = \frac{\Delta P_{\rm m}}{\frac{\mu \rho s \alpha}{1 - ms} \frac{V_0}{A}} \quad \left[W_0 = \frac{\rho s V_0}{1 - ms} \right] \quad \cdots (3.3.2.5)$$

$$\frac{V_0}{A} = \frac{\Delta P_{\rm m}(1-ms)}{u\mu\rho s\alpha} \qquad \cdots (3.3.2.6)$$

先の変形式と上式を辺々引き算する。

$$\left(\frac{V}{A} + \frac{V_0}{A}\right) - \frac{V_0}{A} = \frac{(\Delta P_c + \Delta P_m)(1 - ms)}{u\mu\rho s\alpha} - \frac{\Delta P_m(1 - ms)}{u\mu\rho s\alpha} \quad \cdots (3.3.2.7)$$

$$\frac{V}{A} = \frac{\Delta P_c(1 - ms)}{u\mu\rho s\alpha} \quad \cdots (3.3.2.8)$$

$$u = \frac{\Delta P_c(1 - ms)}{\mu\rho s\alpha (V/A)} \quad \cdots (3.3.2.9)$$

濾過速度 u は定数であることから、濾過面積あたりの濾液量 V/A は次式のように導かれる。

$$u = \frac{1}{A} \frac{dV}{dt} = \frac{d(V/A)}{dt} \quad \dots (3.3.2.10)$$
$$\int_{0}^{V/A} d(V/A) = \int_{0}^{t} u dt \quad \dots (3.3.2.11)$$
$$\frac{V}{A} = ut \quad \dots (3.3.2.12)$$

先の u 式に代入すると、非圧縮性ケークにおける定速濾過時間 t [s]を得る。

$$u = \frac{\Delta P_{\rm c}(1-ms)}{\mu \rho s \alpha(ut)} \qquad \cdots (3.3.2.13)$$
$$t = \frac{\Delta P_{\rm c}(1-ms)}{\mu \rho s \alpha u^2} \qquad \cdots (3.3.2.14)$$

Sperry 式と辺々割り算すると、ケークの圧縮性を考慮した定速濾過時間 t [s]を得る。

$$\frac{t}{\alpha} = \frac{\Delta P_{\rm c}(1-ms)}{\mu \rho s \alpha u^2} / (\alpha_1 \Delta P_{\rm c}^n) \qquad \left[\alpha = \alpha_1 \Delta P_{\rm c}^n\right] \qquad \cdots (3.3.2.15)$$
$$t = \frac{\Delta P_{\rm c}^{n-1}(1-ms)}{\mu \rho s \alpha_1 u^2} \qquad \cdots (3.3.2.16)$$

3. 4 スケールアップ

試験機の濾過面積 A や濾過圧 ΔP が実機の値 A'や $\Delta P'$ に変更されると、試験機の定圧濾過定数 K と相当 濾液量 V_0 は、実機の値 K'と V_0 'に変更される。実機で用いるスラリーの性状と濾材が試験機と同じであ る場合(m, s, a, μ, ρ, R_m が変化しない場合)、実機の定圧濾過定数 K' [m⁶/s]と相当濾液量 V_0' [m³]は、次式の ように導かれる。

$$\frac{K'}{K} = \frac{2A'^2 \Delta P'(1-ms)}{\mu \rho s \alpha} / \frac{2A^2 \Delta P(1-ms)}{\mu \rho s \alpha} \quad \cdots (3.4.1)$$
$$K' = K \left(\frac{A'}{A}\right)^2 \left(\frac{\Delta P'}{\Delta P}\right) \quad \cdots (3.4.2)$$

$$\begin{bmatrix}
k' = k \left(\frac{\Delta P'}{\Delta P} \right) \\
\frac{V'_0}{V_0} = \frac{A'(1 - ms)}{\rho s \alpha} R_m / \frac{A(1 - ms)}{\rho s \alpha} R_m \quad \cdots (3.4.4)
\end{bmatrix}$$

$$\begin{bmatrix}
V'_0 = V_0 \left(\frac{A'}{A} \right) \\
\cdots (3.4.5)
\end{bmatrix}$$

$$\begin{bmatrix}
v'_0 = v_0 \\
\frac{V'_0}{A'} = v_0
\end{bmatrix}
\begin{bmatrix}
v'_0 = \frac{V'_0}{A'}, v = \frac{V}{A} \\
\frac{V'_0}{A'} = v_0
\end{bmatrix}$$

3. 5 回分定圧濾過[文献 15-17]

3.5.1 濾過面積

フィルタープレスの濾過面積 A [m²]は、次式で表される。

 $A = A_0 N_{\rm f}$...(3.5.1.1)

$$A = 2A_{\rm f}N_{\rm f}$$
 $[A_0 = 2A_{\rm f}]$...(3.5.1.2)

ただし、 A_0 は濾枠1枚あたりの濾過面積[m²]、 A_f は濾枠面積[m²]、 N_f は濾枠枚数[-]。 濾過面積 A_0 が濾枠面積 A_f の2倍になる理由は、濾枠の表面と裏面が濾布で覆われるためである。 濾枠枚数 N_f は、湿潤ケーク体積 V_c と濾枠の全体積を等置することで導かれる。

$$V_{\rm c} = A_{\rm f} L_{\rm f} N_{\rm f}$$
 ...(3.5.1.3)
 $N_{\rm f} = \frac{V_{\rm c}}{A_{\rm f} L_{\rm f}}$...(3.5.1.4)

ただし、Lfは濾枠厚み[m]。

1 バッチあたりの湿潤ケーク体積 V_c [m³]は、濾過面積 A [m²]とケーク厚み L_c [m]の積より導かれる。 $V_c = AL_c$ …(3.5.1.5)

$$V_{\rm c} = \frac{mW_{\rm c}}{\rho_{\rm c}} \qquad \left[L_{\rm c} \equiv \frac{mW_{\rm c}}{\rho_{\rm c}A} \right] \qquad \cdots (3.5.1.6)$$
$$V_{\rm c} = \frac{m\rho_{\rm sl}sV_{\rm sl}}{\rho_{\rm c}} \qquad \left[W_{\rm c} = \rho_{\rm sl}sV_{\rm sl} \right] \qquad \cdots (3.5.1.7)$$

3.5.2 回分時間

1バッチあたりの平均濾過速度 uav [m/s]は、次式で表される。

$$u_{\rm av} = \frac{V/A}{t+t_{\rm d}} \quad \cdots (3.5.2.1)$$

ただし、 t_d は濾過操作以外の作業(濾枠の開閉、ケークの排出、濾布の洗浄)に要する時間[s]。 濾液量 Vで微分し、極大値を与える t_d を求める。

$$\frac{du_{av}}{dV} = \frac{d}{dV} \left[\frac{V/A}{(V^2 + 2VV_0)/K + t_d} \right] = 0 \quad \dots (3.5.2.2)$$

$$\frac{(V/A)' \left[(V^2 + 2VV_0)/K + t_d \right] - (V/A) \left[(V^2 + 2VV_0)/K + t_d \right]'}{\left[(V^2 + 2VV_0)/K + t_d \right]^2} = 0 \quad \dots (3.5.2.3)$$
$$(1/A) \left[(V^2 + 2VV_0)/K + t_d \right] - (V/A) \left[2(V + V_0)/K \right] = 0 \quad \dots (3.5.2.4)$$
$$\left[(V^2 + 2VV_0)/K + t_d \right] - \left[2(V^2 + VV_0)/K \right] = 0 \quad \dots (3.5.2.5)$$
$$t_d = \left[(2V^2 + 2VV_0)/K \right] - \left[(V^2 + 2VV_0)/K \right] \quad \dots (3.5.2.6)$$
$$\overline{t_d} = \frac{V^2}{K} \quad \dots (3.5.2.7)$$
定压濾過時間 t の式に代入して V を消去すると、最適化された回分時間 τ [s]を得る。

$$\tau = \frac{(\sqrt{Kt_{\rm d}})^2 + 2(\sqrt{Kt_{\rm d}})V_0}{K} \qquad \cdots (3.5.2.8)$$
$$\tau = \frac{Kt_{\rm d} + 2V_0\sqrt{Kt_{\rm d}}}{K} \qquad \cdots (3.5.2.9)$$
$$\tau = t_{\rm d} + 2V_0\sqrt{\frac{t_{\rm d}}{K}} \qquad \cdots (3.5.2.10)$$

【計算例】回分定圧濾過

試験機(ヌッチェフィルタ)を実機(フィルタープレス)にスケールアップして回分定圧濾過する。①濾枠 枚数 $N_{\rm f}$ [-]、②所要濾過面積 A' [m²]、③濾液量 V [m³]、④定圧濾過定数 K' [m⁶/s]、⑤比抵抗 α [m/kg]、 ⑥相当濾液量 V_0' [m³]、⑦回分時間 τ [min]を求めよ。設計条件は下記の通りとする。(①31 枚, ②124 m², ③ 46.9 m³, ④1.23 m⁶/s, ⑤6.60×10¹⁰ m/kg, ⑥1.24 m³, ⑦16.1 min)

スラリー濃度 <i>s</i>	10.0 wt%	<u>Ruth Plot</u> の傾き 1/K	2.00×107 s/m ⁶
ケーク湿乾質量比 m	1.20	<u>Ruth Plot</u> の切片 2V ₀ /K	$1.00 \times 10^4 \text{ s/m}^3$
固体密度 ps	2650 kg/m ³	<u>実機のスラリー処理量 V_{sl}</u>	50.0 m ³
濾液密度 ρ	1000 kg/m ³	<u>実機の濾過圧力Δ</u> P'	0.300 MPa
<u>濾液粘度 μ</u>	1.00 mPa•s	<u>実機の濾枠面積 A_f</u>	2.00 m ²
試験機の濾過圧力ΔP	0.300 MPa	<u>実機の濾枠厚み L_f</u>	5.00 cm
試験機の濾過面積A	0.0250 m ²	<u>バッチ間の作業時間 td</u>	15 分

 $(]\rho_{\rm sl}=1/[(s/\rho_{\rm s})+(1-s)/\rho]=1/[(10.0\times10^{-2}/2650)+(1-10.0\times10^{-2})/1000]=1066.3 \text{ kg/m}^3$

 $\rho_c = m/[(1/\rho_s) + (m-1)/\rho] = 1.20/[(1/2650) + (1.20-1)/1000] = 2078.4 \text{ kg/m}^3$

 $V_{\rm c}=m\rho_{\rm sl}sV_{\rm sl}/\rho_{\rm c}=(1.20)(1066.3)(10.0\times10^{-2})(50.0)/(2078.4)=3.0782 \text{ m}^3$

 $N_{\rm f} = V_{\rm c}/(A_{\rm f}L_{\rm f}) = (3.0782)/[(2.00)(5.00 \times 10^{-2})] = 30.7 \Rightarrow 31$ 枚

 $(2)A'=2A_{\rm f}N_{\rm f}=(2)(2.00)(31)=124 \text{ m}^2$

 $(3V'=(1-ms)(\rho_{sl}/\rho)V_{sl}=[1-(1.20)(10.0\times10^{-2})](1066.3/1000)(50.0)=46.917 \text{ m}^3 \Rightarrow 46.9 \text{ m}^3$

 $(4)K=1/(1/K)=1/(2.00\times10^7)=0.500\times10^{-7} \text{ m}^{6/s}$

$$\begin{split} &K^{*}=K(A^{*}/A)^{2}(\Delta P^{*}/\Delta P)=(0.500\times10^{-7})(124/0.0250)^{2}(0.300/0.300)=1.2300 \text{ m}^{6}/\text{s} \doteq \boxed{1.23 \text{ m}^{6}/\text{s}} \\ &(5) \alpha=2A^{*2}\Delta P^{*}(1-ms)/(\mu\rho sK^{*}) \\ &=(2)(124)^{2}(0.300\times10^{6})[1-(1.20)(10.0\times10^{-2})]/[(1.00\times10^{-3})(1000)(10.0\times10^{-2})(1.2300)] \\ &=6.6004\times10^{10} \text{ m/kg} \doteq \boxed{6.60\times10^{10} \text{ m/kg}} \\ &(6) V_{0}=(K/2)(2V_{0}/K)=(0.500\times10^{-7}/2)(1.00\times10^{4})=2.50\times10^{-4} \text{ m}^{3} \\ &V_{0}^{*}=V_{0}(A^{*}/A)=(2.50\times10^{-4})(124/0.0250)=\boxed{1.24 \text{ m}^{3}} \\ &(7)\tau=t_{d}+2V_{0}^{*}(t_{d}/K^{*})^{0.5}=(15)(60)+(2)(1.2400)[(15)(60)/(1.2300)]^{0.5}=967.08 \text{ s}=16.118 \text{ min} \div \boxed{16.1 \text{ min}} \end{split}$$

3. 6 連続定圧濾過[文献 15-17]

3.6.1 構造設計

①**濾過面積** 外径 $D_D[m]$ 、幅 $L_D[m]$ の回転円筒ドラムが中心角 ψ [rad] で液に浸かっているときの有効濾過面積 $A_e[m^2]$ は、次式で表される。

 $A_{\rm e} = AF \qquad \cdots (3.6.1.1)$ $\boxed{A_{\rm e} = \pi D_{\rm D} L_{\rm D} \left(\frac{\psi}{2\pi}\right)} \qquad \left[A \equiv \pi D_{\rm D} L_{\rm D}, F \equiv \frac{\psi}{2\pi}\right] \qquad \cdots (3.6.1.2)$

ただし、Aは円筒ドラムの濾過面積[m²]、Fは浸液率[-]。

円筒ドラムの寸法が分かっていない場合の濾過面積 A [m²]は、次式のように導かれる。

$$\upsilon A = \frac{Q}{N_{\rm D}} \quad \left[\upsilon = \frac{V}{A}\right] \quad \cdots (3.6.1.3)$$
$$\boxed{A = \frac{Q}{\upsilon N_{\rm D}}} \quad \cdots (3.6.1.4)$$

ただし、 N_D は円筒ドラムの回転速度[1/s]、Qは濾液流量[m^3/s]、Vは円筒ドラム1回転あたりの濾液量[m^3]、 υ は濾過面積あたりの濾液量[m^3/m^2]。

スラリー処理量 Q_{sl} [m³/s]が分かっている場合の濾液流量Q[m³/s]は次式を用いる。

$$V = \frac{(1 - ms)\rho_{\rm sl}V_{\rm sl}}{\rho} \qquad \cdots (3.6.1.5)$$
$$Q = \frac{(1 - ms)\rho_{\rm sl}Q_{\rm sl}}{\rho} \qquad \left[Q = \frac{V}{t}\right] \qquad \cdots (3.6.1.6)$$

②ドラム径 円筒ドラム径 D_D[m]は、濾過面積の式より導かれる。

$$A(=\pi D_{\rm D}L_{\rm D}) = \pi D_{\rm D}[(L_{\rm D}/D_{\rm D})D_{\rm D}] = \pi D_{\rm D}^{2}(L_{\rm D}/D_{\rm D}) \qquad \cdots (3.6.1.7)$$
$$\boxed{D_{\rm D} = \sqrt{\frac{A}{\pi (L_{\rm D}/D_{\rm D})}} \qquad \cdots (3.6.1.8)$$

3.6.2 濾液量

濾過面積あたりの濾液量v[m³/m²]は、定圧濾過方程式の修正式より導かれる。

$$\upsilon^2 + 2\upsilon(\upsilon_0 + \upsilon_\ell) - kt = 0 \qquad \left[k = \frac{2\Delta P(1 - ms)}{\mu\rho s\alpha}, \upsilon = \frac{V}{A}, \upsilon_0 = \frac{1 - ms}{\rho s\alpha} R_{\rm m} \right] \qquad \cdots (3.6.2.1)$$

$$\upsilon = \frac{-2(\upsilon_0 + \upsilon_\ell) + \sqrt{4(\upsilon_0 + \upsilon_\ell)^2 + 4kt}}{2} \quad \cdots (3.6.2.2)$$
$$\upsilon = \sqrt{(\upsilon_0 + \upsilon_\ell)^2 + kt} - (\upsilon_0 + \upsilon_\ell) \quad \cdots (3.6.2.3)$$

ただし、*v*_ℓは濾過面積あたりの残留ケークの相当濾液量[m³/m²]。

3.6.3 残留ケークの相当濾液量

回転円筒型濾過機の場合、濾材面保護のため、ケークの全量を剥離するのではなく、ある程度のケーク厚みを残して操作する。この残留ケークは濾材抵抗に相当し、その増分としての相当濾液量 V_ℓを相当 濾過量 V₀に加える。残留ケーク中の固体量 W_ℓ [kg]は、上で導いた手順と同様にして次式で表される。

$$W_{\ell} = \frac{\rho s V_{\ell}}{1 - ms} \qquad \cdots (3.6.3.1)$$

残留ケーク厚みL_l[m]は、上で導いた手順と同様にして次式で表される。

$$L_{\ell} = \frac{mW_{\ell}}{\rho_{\rm c}A} \quad \cdots (3.6.3.2)$$

上の2式で W_ℓ を消去すると、残留ケークの相当濾液量 V_ℓ [m³]または v_ℓ [m³/m²]を得る。

$$L_{\ell} = \frac{m}{\rho_{c}A} \left(\frac{\rho s V_{\ell}}{1 - ms}\right) \quad \cdots (3.6.3.3)$$

$$\overline{V_{\ell} = \frac{\rho_{c}A(1 - ms)}{m\rho s}} L_{\ell} \qquad \cdots (3.6.3.4)$$

$$\overline{\nu_{\ell} = \frac{\rho_{c}(1 - ms)}{m\rho s}} L_{\ell} \qquad \left[\nu_{\ell} \equiv \frac{V_{\ell}}{A}\right] \qquad \cdots (3.6.3.5)$$

3.6.4 浸液時間

浸液時間 t [s]は、円筒ドラム1回転あたりの周長 πD_D と周期 $1/N_D$ の比で表される先端速度式と円筒ドラム1回転あたりの浸液距離(πD_D)($\psi/2\pi$)と浸液時間 tの比で表される先端速度式を等置して導く。

$$\frac{\pi D_{\rm D}}{1/N_{\rm D}} = \frac{(\pi D_{\rm D})(\psi/2\pi)}{t} \qquad \cdots (3.6.4.1)$$
$$\boxed{t = \frac{F}{N_{\rm D}}} \quad \left[F = \frac{\psi}{2\pi}\right] \qquad \cdots (3.6.4.2)$$

【計算例】連続定圧濾過

試験機 (ヌッチェフィルタ)を実機 (オリバーフィルタ)にスケールアップして連続定圧濾過する。①浸液 率 F[-]、②定圧濾過定数 k' [m²/s]、③比抵抗 α [m/kg]、④相当濾液量 v_0 ' [m³/m²]、⑤残留ケークの相当濾 液量 v_t ' [m³/m²]、⑥ 1 回転あたり濾液量v' [m³/m²]、⑦濾液流量 Q' [m³/s]、⑧濾過面積 A' [m²]、⑨円筒ドラ ム径 D_D [mm]、⑩円筒ドラム幅 L_D [mm]を求めよ。設計条件は下記の通りとする。(①1/3, ②1.60×10⁻⁵ m²/s, ③6.60×10¹⁰ m/kg, ④0.0100 m³/m², ⑤0.0762 m³/m², ⑥9.23×10⁻⁴ m³/m², ⑦0.00521 m³/s, ⑧169 m², ⑨5996 mm, ⑩8994 mm) 三上 貴司「濾過」新潟大学晶析工学研究室解説資料

Ruth Plot の切片 2V₀/K 1.00×10⁴ s/m³

1<u>0.0 wt%</u>

<u>スラリー濃度 s</u>

ケーク湿乾質量比 m	1.20	<u>実機のスラリー処理量 <i>Q</i>sl</u>	20.0 m ³ /h
固体密度 <u>ρs</u>	2650 kg/m ³	実機の濾過圧力ΔP'	60.0 kPa
<u>濾液密度</u> ρ	1000 kg/m ³	<u>実機の寸法比 L_D/D_D</u>	1.50
濾液粘度 <i>μ</i>	1.00 mPa•s	<u>実機の回転速度 ND</u>	2 rpm
試験機の濾過圧力ΔP	0.300 MPa	実機の浸液角 Ψ	120°
試験機の濾過面積A	0.0250 m ²	<u>実機の残留ケーク厚み L_ℓ</u>	5.00 mm
Ruth Plot の傾き 1/K	2.00×10 ⁷ s/m ⁶		
$ () \Psi = (120^{\circ})(2\pi/360^{\circ}) = 2\pi/3 $ rad			
$F = \Psi/(2\pi) = (2\pi/3)/(2\pi) = \frac{1}{3}$			
$(2)K = 1/(1/K) = 1/(2.00 \times 10^7) = 0.500$	$\times 10^{-7} { m m}^{6/{ m s}}$		
$k = K/A^2 = (0.500 \times 10^{-7})/(0.0250)^2 = 8$	$8.00 \times 10^{-5} \text{ m}^2/\text{s}$		
$k'=k(\Delta P'/\Delta P)=(8.00\times 10^{-5})(0.060)$	$0/0.300 = 1.60 \times 10^{-5} \text{ m}^{2/3}$	\$	
$\Im \alpha = 2\Delta P'(1-ms)/(\mu\rho sk')$			
$=(2)(60.0\times10^{3})1-(1.20)(10.0\times10^{3})1-(1.20)(10.0\times10^{3})](1-(1.20)(10.0$	(1.00×10^{-3})	$(10.0 \times 10^{-2})(1.60 \times 10^{-5})] = 6.60 \times 10^{10} \text{ m/}$	kg
$(4)V_0 = (K/2)(2V_0/K) = (0.500 \times 10^{-7}/K)$	$2)(1.00\times10^{4})=2.50\times10^{-4}$	m ³	
$v_0 = V_0 / A = (2.50 \times 10^{-4}) / 0.0250 = 0.0$	$100 \text{ m}^{3}/\text{m}^{2}$		
$v_0' = v_0 = 0.0100 \text{ m}^3/\text{m}^2 = 0.0100 \text{ m}^3$	$^{3}/m^{2}$		
$(5)\rho_{\rm c}=m/[(1/\rho_{\rm s})+(m-1)/\rho]=1.20/[(m-1)/\rho]$	1/2650)+ $(1.20 - 1)/1000$]=2078.4 kg/m ³	
$v_{\ell}' = \rho_{c}(1 - ms)L_{\ell}/(m\rho s) = (2078.4)$	$1 - (1.20)(10.0 \times 10^{-2})](5.0)$	$00 \times 10^{-3})/[(1.20)(1000)(10.0 \times 10^{-2})]$	
$=0.076208 \text{ m}^3/\text{m}^2 \Rightarrow 0.0762 \text{ m}^3/\text{m}^2$			
$(6)t = F/N_D = (1/3)/(2/60) = 10.0 \text{ s}$			
v_0 '+ v_ℓ '=0.0100+0.076208=0.0862	$208 \text{ m}^3/\text{m}^2$		
$\upsilon' = [(\upsilon_0' + \upsilon_\ell')^2 + k't]^{0.5} - (\upsilon_0' + \upsilon_\ell') =$	= [(0.086208) ² +(1.60×10 ⁻	$(10.0)^{-5}$ (10.0) $^{0.5}$ - 0.086208=9.2304×10 ⁻⁴ m	$^{3}/m^{2}$
$=9.23\times10^{-4}\mathrm{m}^{3}/\mathrm{m}^{2}$			
$(\bar{O}\rho_{\rm sl}=1/[(s/\rho_{\rm s})+(1-s)/\rho]=1/[(10.0)]$	$\times 10^{-2}/2650) + (1 - 10.0 \times$	10^{-2})/1000]=1066.3 kg/m ³	
$Q' = (1 - ms)(\rho_{\rm sl}/\rho)Q_{\rm sl} = [1 - (1.20)(\rho_{\rm sl}/\rho)Q_{\rm sl}]$	$(10.0 \times 10^{-2})](1066.3/100)$	$0)(20.0/3600) = 0.0052130 \text{ m}^{3/s} = 0.0052200000000000000000000000000000000$	$1 m^{3/s}$
$(A' = Q' / (\upsilon' N_D) = (0.0052130) / [(9.00520) / [(9$	$2304 \times 10^{-4})(2/60)] = 169.$	$42 \text{ m}^2 \Rightarrow 169 \text{ m}^2$	
$(D_D = [A' \{\pi(L_D/D_D)\}]^{0.5} = [(169.4)]^{0.5}$	$(1.50\pi)^{0.5}=5.9960 \text{ m}^{\pm}$, 5996 mm	
$(10L_{\rm D}=(L_{\rm D}/D_{\rm D})D_{\rm D}=(1.50)(5.9960)=$	=8.9940 m≒ <mark>8994 mm</mark>		

3. 7 遠心濾過[文献 18-21]

バスケット型円筒濾過機の中で厚さ dr、高さ h の薄いケーク層が軸中心より半径 r の位置で角速度 ω [rad/s] (回転速度 n [rps]) で回転しているものとする(ω =2 π n)。このケーク層内における半径方向の液圧変 化 dP/dr は、遠心力に伴う液圧増加 dPg/dr とケーク層内を液が流れることによる液圧減少($-dP_c/dr$)の和 で表される。

$$\frac{\mathrm{d}P}{\mathrm{d}r} = \frac{\mathrm{d}P_{\mathrm{g}}}{\mathrm{d}r} + \left(-\frac{\mathrm{d}P_{\mathrm{c}}}{\mathrm{d}r}\right) \quad \cdots (3.7.1)$$

遠心力に伴う液圧増加 dPg/dr は、薄いケーク層にかかる力のつり合いより導かれる。

$$(2\pi rh)P + \rho[\pi\{(r+dr)^2 - r^2\}h]r\omega^2 = (2\pi rh)(P+dP) \quad \cdots (3.7.2)$$

$$(2\pi rh)P + \rho(2\pi rhdr)r\omega^2 = (2\pi rh)(P+dP) \quad \cdots (3.7.3)$$

$$\frac{dP_g}{dr} = \rho\omega^2 r \quad [dP \equiv dP_g, \omega = 2\pi n] \quad \cdots (3.7.4)$$

薄いケーク部の液圧減少(-dP_c/dr)は、ケーク部の濾過速度式より導かれる。

$$u = \frac{\Delta P_{c}}{\mu R_{c}} \quad \cdots (3.7.5)$$

$$\frac{Q}{A} = \frac{dP_{c}}{\mu (\alpha dW_{c}/A)} \left[\Delta P_{c} = dP_{c}, u = \frac{Q}{A}, R_{c} = \alpha \frac{dW_{c}}{A} \right] \quad \cdots (3.7.6)$$

$$dP_{c} = \frac{Q\mu \alpha dW_{c}}{A^{2}} \quad \cdots (3.7.7)$$

$$dP_{c} = \frac{Q\mu \alpha \rho_{p} dV_{p}}{(2\pi rh)^{2}} \left[A = 2\pi rh \right] \quad \cdots (3.7.8)$$

$$dP_{c} = \frac{Q\mu \alpha \rho_{p} dV_{b} (1-\varepsilon)}{(2\pi rh)^{2}} \left[\varepsilon = \frac{V_{b} - V_{p}}{V_{b}} \right] \quad \cdots (3.7.10)$$

$$dP_{c} = \frac{Q\mu \alpha \rho_{p} [\pi (r + dr)^{2} h - \pi r^{2} h] (1-\varepsilon)}{(2\pi rh)^{2}} \quad (dr)^{2} \approx 0] \quad \cdots (3.7.11)$$

$$\frac{R}{2} \approx \frac{Q\mu \alpha \rho_{p} (2\pi rhdr) (1-\varepsilon)}{r_{c}} \left[(dr)^{2} \approx 0 \right] \quad \cdots (3.7.11)$$

$$-\frac{\mathrm{d}P_{\rm c}}{\mathrm{d}r} = -\frac{Q\mu\alpha\rho_{\rm p}(1-\varepsilon)}{2\pi rh} \quad \cdots (3.7.12)$$

ただし、 V_b はケーク体積[m³](粒子充填層の体積)、 V_p は粒子体積[m³]、 W_c はケーク中の固体重量[kg-乾燥 固体]。ここでは非圧縮性ケークを仮定し、比抵抗 α と空隙率 ε を定数とみなす。 $dP_g/dr \ge (-dP_c/dr)$ の式を dP/drの式に代入する。

$$\frac{dP}{dr} = \rho \omega^2 r - \frac{Q \mu \alpha \rho_{\rm p} (1 - \varepsilon)}{2 \pi r h} \quad \cdots (3.7.13)$$

$$\int_{P_{\rm c}}^{P_{\rm m}} dP = \rho \omega^2 \int_{r_{\rm c}}^{r_{\rm m}} r dr - \frac{Q \mu \rho_{\rm p}}{2 \pi h} \int_{r_{\rm c}}^{r_{\rm m}} \frac{\alpha (1 - \varepsilon)}{r} dr \quad \cdots (3.7.14)$$

$$\int_{P_{\rm c}}^{P_{\rm m}} dp P = \rho \omega^2 \int_{r_{\rm c}}^{r_{\rm m}} r dr - \frac{Q \mu \alpha \rho_{\rm p} (1 - \varepsilon)}{2 \pi h} \int_{r_{\rm c}}^{r_{\rm m}} \frac{dr}{r} \quad \cdots (3.7.15)$$

$$P_{\rm m} - P_{\rm c} = \frac{\rho \omega^2}{2} (r_{\rm m}^2 - r_{\rm c}^2) - \frac{Q \mu \alpha \rho_{\rm p} (1 - \varepsilon)}{2 \pi h} \ln \frac{r_{\rm m}}{r_{\rm c}} \quad \cdots (3.7.16)$$

ただし、 $P_{\rm c}$ はケーク層の表面にかかる圧力[Pa]、 $P_{\rm m}$ は濾材にかかる圧力[Pa]。 濾材にかかる圧力 $P_{\rm m}$ は、濾材部の濾過速度式より導かれる。

$$\begin{split} & u = \frac{\Delta P_{m}}{\mu R_{m}} \quad \cdots (3.7.17) \\ & \frac{Q}{A} = \frac{P_{m}}{\mu R_{m}} \quad \left[u = \frac{Q}{A}, \Delta P_{m} = P_{m} \right] \quad \cdots (3.7.18) \\ & P_{m} = \frac{Q\mu R_{m}}{2\pi r_{m}h} \quad \left[A = 2\pi r_{m}h \right] \quad \cdots (3.7.19) \\ & \mathcal{T} - \mathcal{T} \overline{B} \, \mathcal{O} \, \overline{g} \, \overline{m} \, \overline{g} \, \overline{g} \, \overline{m} \, \overline{g} \, \overline$$

 $\int^{W_c} r_m$

$$\int_0^{\infty} dW_c = \int_{r_c}^{\infty} 2\pi h \rho_p (1-\varepsilon) r dr \quad \cdots (3.7.29)$$

$$W_{\rm c} = \pi h \rho_{\rm p} (1 - \varepsilon) (r_{\rm m}^2 - r_{\rm c}^2) \quad \cdots (3.7.30)$$

$$1 - \varepsilon = \frac{W_{\rm c}}{\pi h \rho_{\rm p} (r_{\rm m}^2 - r_{\rm c}^2)} \quad \cdots (3.7.31)$$

Qの式に代入して消去すると、充填率を含まない処理性能式(設計方程式)を得る。

$$Q = \frac{\Delta P}{\mu \left[\frac{\alpha \rho_{\rm p}}{2\pi h} \frac{W_{\rm c}}{\pi h \rho_{\rm p} (r_{\rm m}^2 - r_{\rm c}^2)} \ln \frac{r_{\rm m}}{r_{\rm c}} + \frac{R_{\rm m}}{2\pi r_{\rm m} h}\right]} \quad \cdots (3.7.32)$$

$$Q = \frac{\Delta P}{\mu \left[\frac{\alpha}{2\pi h} \frac{W_{c}}{\pi h(r_{m} + r_{c})(r_{m} - r_{c})} \ln \frac{r_{m}}{r_{c}} + \frac{R_{m}}{2\pi r_{m}h} \right]} \cdots (3.7.33)$$

$$Q = \frac{\Delta P}{\mu \left[\frac{\alpha W_{c}}{(2\pi (r_{m} - r_{c})h/\ln(r_{m}/r_{c}))} \{2\pi (r_{m} + r_{c})h/2\} + \frac{R_{m}}{2\pi r_{m}h} \right]} \cdots (3.7.34)$$

$$Q = \frac{\Delta P}{\mu \left[\frac{\alpha W_{c}}{(2\pi (r_{m} - r_{c})h/\ln(2\pi r_{m}h/2\pi r_{c}h))} \{2\pi (r_{m} + r_{c})h/2\} + \frac{R_{m}}{2\pi r_{m}h} \right]} \cdots (3.7.35)$$

$$Q = \frac{\Delta P}{\mu \left[\frac{\alpha W_{c}}{(4m - A_{c})/\ln(A_{m}/A_{c}))} \{(A_{m} + A_{c})/2\} + \frac{R_{m}}{A_{m}} \right]} \left[A_{m} \equiv 2\pi r_{m}h, A_{c} \equiv 2\pi r_{c}h \right]} \cdots (3.7.36)$$

$$Q = \frac{\Delta P}{\mu \left[\frac{\alpha W_{c}}{A_{lm}A_{av}} + \frac{R_{m}}{A_{m}} \right]} \left[\Delta P \equiv \frac{\rho \omega^{2} (r_{m}^{2} - r_{c}^{2})}{2} + \frac{\rho_{sl} \omega^{2} (r_{c}^{2} - r_{f}^{2})}{2}, A_{lm} \equiv \frac{A_{m} - A_{c}}{\ln(A_{m}/A_{c})}, A_{av} \equiv \frac{A_{m} + A_{c}}{2} \right]} \cdots (3.7.37)$$

スラリー処理量 Q [m³/s]とその他の必要条件が分かっている場合は、比抵抗の式が導かれる。(濾材抵抗 は、無視する。)

$$\alpha = \frac{\Delta P A_{\rm lm} A_{\rm av}}{\mu Q W_{\rm c}} \qquad \cdots (3.7.38)$$

【計算例】遠心濾過

懸濁液をバスケット型円筒濾過機により遠心濾過する。①濾過圧力 ΔP [MPa]、②対数平均濾過面積 $A_{\rm Im}$ [m²]、③比抵抗 α [m/kg]を求めよ。設計条件は下記の通りとする。(①2.22 MPa, ②0.470 m², ③1.50×10¹⁰ m/kg)

処理量 Q	0.360 m ³ /h	<u>バスケット回転数 n</u>	3000 rpm
<u> スラリー固体量 W.</u>	330 kg	<u>バスケット高さ</u> h	20.0 cm
スラリー密度 ρ _{sl}	1100 kg/m ³	バスケット有効径 2r _m	80.0 cm
濾液密度 ρ	1000 kg/m ³	<u>ケーク厚み r_m-r_c</u>	5.00 cm
<u>濾液粘度 µ</u>	1.00 mPa•s	<u>スラリー厚み r_cーr_f</u>	1.00 cm

 $1r_{\rm m}=2r_{\rm m}/2=80.0/2=40.0$ cm=0.400 m

 $r_{\rm c} = r_{\rm m} - (r_{\rm m} - r_{\rm c}) = 40.0 - 5.00 = 35.0 \text{ cm} = 0.350 \text{ m}$

 $r_{\rm f} = r_{\rm c} - (r_{\rm c} - r_{\rm f}) = 35.0 - 1.00 = 34.0 \text{ cm} = 0.340 \text{ m}$

 $\omega = 2\pi n = (2\pi)(3000/60) = 100\pi$

 $\Delta P = (1/2)\rho\omega^2 (r_{\rm m}^2 - r_{\rm c}^2) + (1/2)\rho_{\rm sl}\omega^2 (r_{\rm c}^2 - r_{\rm f}^2) = (1/2)\omega^2 [\rho(r_{\rm m}^2 - r_{\rm c}^2) + \rho_{\rm sl}(r_{\rm c}^2 - r_{\rm f}^2)]$

 $=(1/2)(100\pi)^{2}[(1000)(0.400^{2}-0.350^{2})+(1100)(0.350^{2}-0.340^{2})]=2.2251\times10^{6} \text{ Pa} \rightleftharpoons 2.22 \text{ MPa}$

 $(2)A_{\rm m}=2\pi r_{\rm m}h=(2\pi)(40.0/100)(20.0/100)=4\pi/25$

 $A_c = 2\pi r_c h = (2\pi)(35.0/100)(20.0/100) = 7\pi/50$

 $A_{\rm lm} = (A_{\rm m} - A_{\rm c})/\ln(A_{\rm m}/A_{\rm c}) = (4\pi/25 - 7\pi/50)/\ln[(4\pi/25)/(7\pi/50)] = 0.47053 \Rightarrow 0.470 \text{ m}^2$

 $(3A_{av}=(A_m+A_c)/2=[(4\pi/25)+(7\pi/50)]/2=0.47123 \text{ m}^2$

 $\alpha = \Delta PA_{\rm lm}A_{\rm av}/(\mu QW_{\rm c}) = (2.2251 \times 10^6)(0.47053)(0.47123)/[(1.00 \times 10^{-3})(0.360/3600)(330)]$

 $=1.4950\times10^{10} \text{ m/kg} \Rightarrow 1.50\times10^{10} \text{ m/kg}$

参考文献

- [1] H. Darcy; Les Fontains Publiques de la Ville de Dijion (1856)
- [2] G. Hagen; Pogg. Ann., 46, 423-442 (1839)
- [3] J. Poiseuille; Inst. De France Acad. Des Sci., 9 (1846) 433-544
- [4] J. Kozeny; Sitzb. Akad. Wiss., Wien, Math.-naturw. Kl. 136 (Abt, II a), 271-306 (1927)
- [5] J. Kozeny; Z. Pfl.-Ernahr. Dung. Bodenk, **28A**, 54-56 (1933)
- [6] P.C. Carman; Trans. Inst. Chem. Eng., 15, 150-166(1937)
- [7] 吉田文武,森 芳郎編; 詳論 化学工学 I 「単位操作 I」,朝倉書店(1962),8 章
- [8] 藤田重文, 東畑平一郎編; 化学工学Ⅱ(第2版)「機械的操作」, 東京化学同人(1972), 3.3 章
- [9] 大山義年; 化学工学 II, 岩波書店(1963), 6.3 章
- [10] 白戸紋平; 化学工学 機械的操作の基礎, 丸善(1980), 8.1 章
- [11] 三輪茂雄; 粉体工学通論, 日刊工業新聞社(1981), 7.3.2 章
- [12] 杉本泰治; 沪過 メカニズムと沪材・沪過助剤, 地人書館(1992), 3.4 章
- [13] 入谷英司; 絵解き 濾過技術 基礎のきそ, 日刊工業新聞社(2011),2章
- [14] B.F. Ruth; Trans. AIChE, 33, 806-816(1937)
- [15] 井出哲夫; 水処理工学(第2版), 技報堂出版(1990), 4章
- [16] 化学工学会編; 化学工学-解説と演習-(第3版), 槇書店(2006), 9.2 章
- [17] 川瀬義矩; 環境問題を解く化学工学, 化学工業社(2001), 問題 3.9.4
- [18] 吉田文武, 森 芳郎(編); 詳論 化学工学 I 「単位操作 I」, 朝倉書店(1962), 9 章
- [19] 藤田重文, 東畑平一郎(編); 化学工学 II (第2版)「機械的操作」, 東京化学同人(1972), 3.4 章
- [20] 化学工学協会(編); 解説 化学工学演習(第2版)下巻, 槇書店(1973), 3章
- [21] 光武量; 例題演習 化学工学, 産業図書(1964), pp.110-111

令和5年1月22日作成

令和6年1月11日改訂

令和6年1月17日改訂

問題

- (1) [透過係数]直径 10.0 cm の円筒容器に砂を 24.0 cm 充填して少量の固体粒子を含む希薄懸濁液を毎時 3.60 L で砂濾過する。濾層入口からの液面高さが 10.0 cm に維持されるように給液するとき、①濾過 圧力 P [kPa]、②濾過速度 u [mm/s]、③濾層抵抗 R [m⁻¹]、④透過係数 k_p [m²]を求めよ。濾液の密度 1000 kg/m³、粘度 1.00 mPa・s、重力加速度 9.81 m/s² とする。(①3.33 kPa, ②0.127 mm/s, ③2.62×10¹⁰ m ⁻¹、④9.16×10⁻¹² m²)
- (2) [透過係数]直径 25.0 cm の円筒容器に砂を 60.0 cm 充填して少量の固体粒子を含む希薄懸濁液を毎時 90.0 L で砂濾過する。濾層入口からの液面高さが 15.0 cm に維持されるように給液するとき、①濾過 圧力 P [kPa]、②濾過速度 u [mm/s]、③濾層抵抗 R [m⁻¹]、④透過係数 k_p [m²]を求めよ。濾液の密度 1000 kg/m³、粘度 1.00 mPa・s、重力加速度 9.81 m/s² とする。(①7.36 kPa, ②0.509 mm/s, ③1.44×10¹⁰ m ⁻¹, ④4.15×10⁻¹¹ m²)
- (3) [理論比抵抗]非圧縮性の球状固体粒子(粒子密度 2650 kg/m³、比表面積径 1.00 μm)を含む懸濁液を定 圧濾過する。①湿潤ケーク密度 ρ_c [kg/m³]、②ケーク平均空隙率 ε_{av} [-]、③理論比抵抗 α [m/kg]を求 めよ。ケーク湿乾質量比 1.20、濾液の密度 1000 kg/m³、粘度 1.00 mPa·s とする。(①2078 kg/m³, ②0.346, ③1.07×10¹² m/kg)
- (4) [理論比抵抗]非圧縮性の球状固体粒子(粒子密度 2650 kg/m³、比表面積径 0.100 μm)を含む懸濁液を 定圧濾過する。①湿潤ケーク密度 ρ_c [kg/m³]、②ケーク平均空隙率 ε_{av} [-]、③理論比抵抗 α [m/kg]を 求めよ。ケーク湿乾質量比 1.50、濾液の密度 1000 kg/m³、粘度 1.00 mPa·s とする。(①1710 kg/m³, ② 0.570, ③1.58×10¹³ m/kg)
- (5) [ケーク濾過]懸濁液をヌッチェフィルタにより定圧濾過する。①濾液量 V[L]、②ケーク平均空隙率 ε_{av} [-]、③濾液基準の固体濃度 κ [kg-乾燥固体/m³-濾液]、④比抵抗 α [m/kg]、⑤濾材抵抗 R_m [1/m]を 求めよ。設計条件は下記の通りとする。(①0.938 L, ②0.346, ③114 kg/m³, ④6.60×10¹⁰ m/kg, ⑤ 7.50×10¹⁰ m⁻¹)

<u>スラリー量 <i>V</i>sl</u>	1.00 L	濾液粘度 µ	1.00 mPa•s
<u>スラリー濃度 s</u>	10.0 wt%	濾過圧力ΔP	0.300 MPa
ケーク湿乾質量比 m	1.20	濾過面積 A	0.0250 m ²
固体密度 ρ _s	2650 kg/m ³	Ruth Plot の傾き 1/K	2.00×10 ⁷ s/m ⁶
濾液密度 p	1000 kg/m ³	<u>Ruth Plot</u> の切片 2V ₀ /K	1.00×10 ⁴ s/m ³

(6) [ケーク濾過]懸濁液をヌッチェフィルタにより定圧濾過する。①濾液量 V[L]、②ケーク平均空隙率 ε_{av} [-]、③濾液基準の固体濃度 κ [kg-乾燥固体/m³-濾液]、④比抵抗 α [m/kg]、⑤濾材抵抗 R_m [1/m]を 求めよ。設計条件は下記の通りとする。(①0.855 L, ②0.570, ③194 kg/m³, ④1.61×10¹⁰ m/kg, ⑤ 3.75×10¹⁰ m⁻¹)

<u> スラリー量 <i>V</i>_{sl}</u>	1.00 L	<u>濾液粘度 µ</u>	1.00 mPa•s
スラリー濃度 s	15.0 wt%	濾過圧力ΔP	0.500 MPa
ケーク湿乾質量比 m	2.50	濾過面積A	0.0250 m ²
固体密度 <u>ρ</u> s	2650 kg/m ³	Ruth Plot の傾き 1/K	5.00×10 ⁶ s/m ⁶
濾液密度 p	1000 kg/m ³	<u>Ruth Plot</u> の切片 2V ₀ /K	3.00×10 ³ s/m ³

 (7) [回分定圧濾過]試験機(ヌッチェフィルタ)を実機(フィルタープレス)にスケールアップして回分定 圧濾過する。①濾枠枚数 N_f[-]、②所要濾過面積 A' [m²]、③濾液量 V' [m³]、④定圧濾過定数 K' [m⁶/s]、
 ⑤比抵抗 α [m/kg]、⑥相当濾液量 V₀' [m³]、⑦回分時間 τ [min]を求めよ。設計条件は下記の通りとす る。(①20 枚, ②60.0 m², ③18.5 m³, ④0.662 m⁶/s, ⑤3.29×10¹⁰ m/kg, ⑥0.965 m³, ⑦16.2 min)

<u>スラリー濃度 s</u>	8.00 wt%	Ruth Plot の傾き 1/K	8.70×10 ⁶ s/m ⁶
ケーク湿乾質量比 m	1.50	<u>Ruth Plot</u> の切片 2V ₀ /K	7.00×10 ³ s/m ³
固体密度 <u>ρ</u> s	2650 kg/m ³	<u>実機のスラリー処理量 V_{sl}</u>	20.0 m ³
濾液密度 <i>ρ</i>	1000 kg/m ³	<u>実機の濾過圧力Δ</u> P'	0.275 MPa
濾液粘度 <u>μ</u>	1.00 mPa•s	<u>実機の濾枠面積 A</u> f	1.50 m ²
試験機の濾過圧力ΔP	0.275 MPa	<u>実機の濾枠厚み L_f</u>	5.00 cm
試験機の濾過面積A	0.0250 m ²	<u> バッチ間の作業時間 td</u>	15分

 (8) [回分定圧濾過]試験機(ヌッチェフィルタ)を実機(フィルタープレス)にスケールアップして回分定 圧濾過する。①濾枠枚数 N_f[-]、②所要濾過面積 A' [m²]、③濾液量 V' [m³]、④定圧濾過定数 K' [m⁶/s]、
 ⑤比抵抗 α [m/kg]、⑥相当濾液量 V₀' [m³]、⑦回分時間 τ [min]を求めよ。設計条件は下記の通りとす る。(①44 枚, ②352 m², ③51.3 m³, ④39.6 m⁶/s, ⑤1.61×10¹⁰ m/kg, ⑥4.22 m³, ⑦15.7 min)

<u>スラリー濃度 s</u>	15.0 wt%	<u>Ruth Plot</u> の傾き 1/K	5.00×10 ⁶ s/m ⁶
ケーク湿乾質量比 m	1.50	<u>Ruth Plot の切片 2V₀/K</u>	3.00×10 ³ s/m ³
固体密度 <u>p</u> 。	2650 kg/m ³	<u>実機のスラリー処理量 V_{sl}</u>	60.0 m ³
濾液密度 <i>p</i>	1000 kg/m ³	<u>実機の濾過圧力Δ</u> P'	0.500 MPa
濾液粘度 µ	1.00 mPa•s	<u>実機の濾枠面積 A</u> f	4.00 m ²
<u>試験機の濾過圧力ΔP</u>	0.500 MPa	<u>実機の濾枠厚み L</u> f	5.00 cm
試験機の濾過面積A	0.0250 m ²	<u>バッチ間の作業時間 td</u>	15分

(9) [連続定圧濾過] 試験機(ヌッチェフィルタ)を実機(オリバーフィルタ)にスケールアップして連続 定圧濾過する。①浸液率F[-]、②定圧濾過定数k'[m²/s]、③比抵抗α[m/kg]、④相当濾液量い'[m³/m²]、
⑤残留ケークの相当濾液量い'[m³/m²]、⑥1回転あたり濾液量い[m³/m²]、⑦濾液流量Q'[m³/s]、⑧濾 過面積 A'[m²]、⑨円筒ドラム径 D_D[mm]、⑩円筒ドラム幅 L_D[mm]を求めよ。設計条件は下記の通り とする。(①1/3、②4.68×10⁻⁵ m²/s、③3.29×10¹⁰ m/kg、④0.0161 m³/m²、⑤0.0627 m³/m²、⑥0.00292 m³/m²、⑦0.00514 m³/s、⑧52.9 m²、⑨3350 mm、⑩5026 mm)

<u>スラリー濃度 s</u>	8.00 wt%	<u>Ruth Plot の切片 2V₀/K</u>	7.00×10 ³ s/m ³
ケーク湿乾質量比 m	1.50	<u>実機のスラリー処理量 Q_{sl}</u>	20.0 m ³ /h
固体密度 <u>ρ</u> s	2650 kg/m ³	<u>実機の濾過圧力Δ</u> P'	70.0 kPa
濾液密度 <i>p</i>	1000 kg/m ³	<u>実機の寸法比 L_D/D_D</u>	1.50
濾液粘度 <u>µ</u>	1.00 mPa•s	<u>実機の回転速度 ND</u>	2 rpm
試験機の濾過圧力ΔP	0.275 MPa	実機の浸液角 Ψ	120°
試験機の濾過面積А	0.0250 m ²	<u>実機の残留ケーク厚み L_l</u>	5.00 mm
Ruth Plot の傾き 1/K	8.70×10 ⁶ s/m ⁶		

(10) [連続定圧濾過] 試験機(ヌッチェフィルタ)を実機(オリバーフィルタ)にスケールアップして連続定 圧濾過する。①浸液率 F[-]、②定圧濾過定数 k' [m²/s]、③比抵抗 α [m/kg]、④相当濾液量 υ₀' [m³/m²]、 ⑤残留ケークの相当濾液量 v_{t}' [m³/m²]、⑥ 1 回転あたり濾液量v'[m³/m²]、⑦濾液流量Q'[m³/s]、⑧濾 過面積A'[m²]、⑨円筒ドラム径 D_{D} [mm]、⑩円筒ドラム幅 L_{D} [mm]を求めよ。設計条件は下記の通り とする。(①1/3, ②3.20×10⁻⁵ m²/s, ③1.61×10¹⁰ m/kg, ④0.0120 m³/m², ⑤0.0294 m³/m², ⑥8.49×10⁻⁴ m³/m², ⑦0.00475 m³/s, ⑧37.3 m², ⑨2813 mm, ⑩4219 mm)

スラリー濃度 <i>s</i>	15.0 wt%	<u>Ruth Plot</u> の切片 2V ₀ /K	3.00×10 ³ s/m ³
ケーク湿乾質量比 m	1.50	<u>実機のスラリー処理量 Q_{sl}</u>	20.0 m ³ /h
固体密度 ρ <u>s</u>	2650 kg/m ³	<u>実機の濾過圧力Δ</u> P'	50.0 kPa
濾液密度 <i>p</i>	1000 kg/m ³	<u>実機の寸法比 <i>L</i>_D/D_D</u>	1.50
濾液粘度 µ	1.00 mPa•s	<u>実機の回転速度 Np</u>	9 rpm
試験機の濾過圧力ΔP	0.500 MPa	実機の浸液角 Ψ	120°
試験機の濾過面積A	0.0250 m ²	<u>実機の残留ケーク厚み L_l</u>	5.00 mm
<u>Ruth Plot</u> の傾き 1/K	5.00×10 ⁶ s/m ⁶		

(11) [遠心濾過]懸濁液をバスケット型円筒濾過機により遠心濾過する。①濾過圧力 ΔP [MPa]、②対数平 均濾過面積 A_{lm} [m²]、③比抵抗 α [m/kg]を求めよ。設計条件は下記の通りとする。(①4.52 MPa, ②0.721 m², ③1.78×10¹⁰ m/kg)

処理量Q	0.720 m ³ /h	バスケット回転数 n	<u>3000 rpm</u>
<u>スラリー固体量 Wc</u>	660 kg	バスケット高さ <i>h</i>	25.0 cm
<u>スラリー密度 ρsl</u>	1100 kg/m ³	バスケット有効径 2rm	100 cm
濾液密度 <i>ρ</i>	1000 kg/m ³	<u>ケーク厚み rm-rc</u>	8.00 cm
濾液粘度 <u>µ</u>	1.00 mPa•s	<u>スラリー厚み <i>r</i>c-<i>r</i>f</u>	2.00 cm

(12) [遠心濾過]懸濁液をバスケット型円筒濾過機により遠心濾過する。①濾過圧力 ΔP [MPa]、②対数平 均濾過面積 A_{lm} [m²]、③比抵抗 α [m/kg]を求めよ。設計条件は下記の通りとする。(①8.90 MPa, ②0.470 m², ③5.98×10¹⁰ m/kg)

処理量 <i>Q</i>	0.360 m ³ /h	バスケット回転数 n	6000 rpm
スラリー固体量 W.	330 kg	バスケット高さ <i>h</i>	20.0 cm
スラリー密度 <i>ρ</i> sl	1100 kg/m ³	バスケット有効径 2rm	80.0 cm
濾液密度 <i>ρ</i>	1000 kg/m ³	<u>ケーク厚み rm-rc</u>	5.00 cm
濾液粘度 <u>µ</u>	1.00 mPa•s	<u>スラリー厚み <i>r</i>c-<i>r</i>f</u>	1.00 cm